POPULATE
Download Flojoy Studio to try this app
Generate an OrderedPair of random numbers, depending on the distribution selected and the input data. Inputs
------
default : OrderedPair|Vector
Input to use as the x-axis for the random samples. Params: distribution : select the distribution over the random samples lower_bound : float the lower bound of the output interval upper_bound : float the upper bound of the output interval normal_mean : float the mean or "center" of the normal distribution normal_standard_deviation : float the spread or "width" of the normal distribution poisson_events : float the expected number of events occurring in a fixed time-interval when distribution is poisson Returns: out : OrderedPair x: provided from input data
y: the random samples
Python Code
import random
from typing import Literal
import numpy as np
from flojoy import OrderedPair, Vector, display, flojoy
@flojoy
def POPULATE(
default: OrderedPair | Vector,
distribution: Literal["normal", "uniform", "poisson"] = "normal",
lower_bound: float = 0,
upper_bound: float = 1,
normal_mean: float = 0,
normal_standard_deviation: float = 1,
poisson_events: float = 1,
) -> OrderedPair:
"""Generate an OrderedPair of random numbers, depending on the distribution selected and the input data.
Inputs
------
default : OrderedPair|Vector
Input to use as the x-axis for the random samples.
Parameters
----------
distribution : select
the distribution over the random samples
lower_bound : float
the lower bound of the output interval
upper_bound : float
the upper bound of the output interval
normal_mean : float
the mean or "center" of the normal distribution
normal_standard_deviation : float
the spread or "width" of the normal distribution
poisson_events : float
the expected number of events occurring in a fixed time-interval when distribution is poisson
Returns
-------
OrderedPair
x: provided from input data
y: the random samples
"""
if upper_bound < lower_bound:
upper_bound, lower_bound = lower_bound, upper_bound
seed = random.randint(1, 10000)
my_generator = np.random.default_rng(seed)
match default:
case OrderedPair():
size = len(default.x)
x = default.x
case Vector():
size = len(default.v)
x = default.v
match distribution:
case "uniform":
y = my_generator.uniform(low=lower_bound, high=upper_bound, size=size)
case "normal":
y = my_generator.normal(
loc=normal_mean, scale=normal_standard_deviation, size=size
)
case "poisson":
y = my_generator.poisson(lam=poisson_events, size=size)
return OrderedPair(x=x, y=y)
@display
def OVERLOAD(lower_bound, upper_bound, distribution="uniform") -> None:
return None
@display
def OVERLOAD( # noqa: F811
normal_mean, normal_standard_deviation, distribution="normal"
) -> None:
return None
@display
def OVERLOAD(poisson_events, distribution="poisson") -> None: # noqa: F811
return None
Example App
Having problems with this example app? Join our Discord community and we will help you out!
In this example, LINSPACE
is used to generate a list of 1000 samples, it is then passed into two POPULATE
nodes, which randomizes the values within the list with a normal (or Gaussian) distribution and a Poisson distribution.
The distribution is then plotted with HISTOGRAM
and as expected of a Gaussian distribution,
the output of the HISTOGRAM
node converges towards a bell curve. The Poisson distribution results in more of a step function.
The POPULATE
node requires an input Vector
or OrderedPair
to function.