TABLE
Download Flojoy Studio to try this app
Create a Plotly Table visualization for a given input DataContainer. Params: default : OrderedTriple|OrderedPair|DataFrame|Vector|Scalar the DataContainer to be visualized Returns: out : Plotly the DataContainer containing the Plotly Table visualization
Python Code
import pandas as pd
import plotly.graph_objects as go
from flojoy import DataFrame, OrderedPair, OrderedTriple, Plotly, Scalar, Vector, flojoy
from blocks.DATA.VISUALIZATION.template import plot_layout
@flojoy
def TABLE(default: OrderedTriple | OrderedPair | DataFrame | Vector) -> Plotly:
"""Create a Plotly Table visualization for a given input DataContainer.
Parameters
----------
default : OrderedTriple|OrderedPair|DataFrame|Vector|Scalar
the DataContainer to be visualized
Returns
-------
Plotly
the DataContainer containing the Plotly Table visualization
"""
layout = plot_layout(title="TABLE")
fig = go.Figure(layout=layout)
match default:
case OrderedPair():
x = default.x
y = default.y
fig.add_trace(
go.Table(
header=dict(values=["x", "y"], align="center"),
cells=dict(values=[x, y], align="center"),
)
)
case OrderedTriple():
x = default.x
y = default.y
z = default.z
fig.add_trace(
go.Table(
header=dict(values=["x", "y", "z"], align="center"),
cells=dict(values=[x, y, z], align="center"),
)
)
case Vector():
v = default.v
fig.add_trace(
go.Table(
header=dict(values=["v"], align="center"),
cells=dict(values=[v], align="center"),
)
)
case Scalar():
c = default.c
fig.add_trace(
go.Table(
header=dict(
values=["Scalar"],
align="center",
font=dict(size=1),
height=0,
),
cells=dict(
values=[[c]],
align="center",
font=dict(size=25),
),
)
)
case DataFrame():
df = pd.DataFrame(default.m)
fig.add_trace(
go.Table(
header=dict(values=list(df.columns), align="center"),
cells=dict(
values=[df[col] for col in df.columns],
align="center",
),
)
)
return Plotly(fig=fig)
Example App
Having problems with this example app? Join our Discord community and we will help you out!
In this example, we start by using the LINSPACE
node to generate a Vector
object of the DataContainer
class.
Next, we employ the PLOTLY_DATASET
node to create a DataFrame
object of the DataContainer
class.
To convert the DataFrame
into an OrderedTriple
object of the DataContainer
class, we utilize the DF_2_ORDEREDTRIPLE
node. The resulting OrderedTriple
object contains three arrays: x, y, and z.
Finally, we visualize the data from these three nodes using the TABLE
node, which generates a Plotly Table visualization for each of the input nodes.